Background

 Basic goal of tracking: to associate clusters together to reconstruct true particle track

• Not necessarily about fitting

- Subgoals:
 - High efficiency
 - Good ghost rejection
 - CPU time/memory

The need for pattern recognition

- How should we approach tracking?
- One possibility: brute force method
 - Makes track candidates of all possible combinations of the hits
 - Perform some ghost rejection:
 - Would require fitting ALL tracks and keeping combinations of hits which pass a χ² cut
 - The highest efficiency possible
 - Will have a gigantic amount of ghosts
 - Algorithmic time scales with (n)^layers

n hits in detector

We can do a lot better than this just by inventing smarter ways to make track candidates

Hough Pattern Recognition

- How should we approach tracking?
- One possibility: brute force method
 - Makes track candidates of all possible combinations of the hits
 - Perform some ghost rejection:
 - Would require fitting ALL tracks and keeping combinations of hits which pass a χ² cut
 - The highest efficiency possible
 - Will have a gigantic amount of ghosts
 - Algorithmic time scales with (n)^layers

n hits in detector

We can do a lot better than this just by inventing smarter ways to make track candidates

Limitations at 5D

 If we try to store the 5D hough space with a decent binning in memory, it can't fit into the L1 cache.

 This is a problem because while hough transforming, the 5D hough space is accessed randomly and not contiguously

 Thus the CPU has to constantly clear its cache and grab a new part of the 5D array from RAM: a slow process

Recursive Solution to Resource Limitations

- Solution: Only create Hough Spaces with binning that can fit into the L1 cache
- In order to get required level of k ~ n^1/2 binning, we "zoom" into the Hough Space
- Take every bin with a lot of overlap, and transform only those points into a new Hough Space with boundaries of the initial bin
- In effect we are creating the fully binned 5D Hough space, one section at a time.

Coarsely binned 5D Hough Space

Zoomed In Hough Space

Now that we have zoomed into this piece of hough space, overlap peaks become more meaningful

Hough Transform Performance at Large N

- To perform a Hough Transform on a single point, it takes k^3 iterations because there are only 3 independent parameters
- For n points, it takes n k^3 iterations since we know k ~ n^1/2 the algorithmic time scaling is n^(5/2)
- Recursive zooming adds a factor of log(n)

<u>Algorithmic Time Scaling of Tracking Algorithms</u>

n ~ hits L = layers	Brute Force	Layer Projections	HelixHough
No vertex info	n ^L	n ³	n ^{5/2} log(n)
With Vertex info	n ^{L-1}	n^2	n 3/2 log(n)

Hough Transform in 5-dimensions

X

beam eye's view

I/r

side view

phi: angle to center of rotation

des

phi

dca: distance of closest approach to origin

kappa = I/r: curvature in the bend plane

TASK #1: We will change the limits on the "pseudorapdity" (dz/dl) and bending (1/r) voting array

z: offset to origin

dz/dl: run in z over length along curve

TASK #2: We will need a real field kalman fitter to be developed, since our field is less constant

sPHENIX MIE reference design tracking

R= 80.0cm φ strip)

R= 45.5cm (U strip)

R= 44..5cm (φ strip)

R= 10.5cm (U strip)

R= 9.5cm (φ strip)

R= 4.6cm (VTX Pixel)

R= 2.7cm (VTX Pixel)

Extended radial reach for improved resolution

Shared support for outer tracking momentum and pattern recognition layers for material budgeting

Layer	φ pitch (um)	z pitch (mm)	Thickness (%)
1	50	0.425	1.3
2	50	0.425	1.3
3	60	8	2.7
4	240	2	
5	60	8	2.0
6	240	2	
7	60	8	2.0

sPHENIX Performance Measures

...in central 0-5% Au+Au...

pattern detection efficiency
"How often are we finding the hits
left by a real particle?"

"In our output, how often are all the hits from the same particle?"

>95% in most cases, lowest momenta become more challenging due to bend producing a large phase space for backgrounds

sPHENIX Performance Measures

...after a scale correction of 1.6%, we have give momentum resolution...

